Mungkin teman-teman belum tahu bahwa di luar kesembilan planet yang mengisi galaksi bima sakti kita ternyata masih ada planet lain di luar kesembilan planet itu. Bahkan jumlahnya mencapai sepuluh. Mau tahu lebih jelas plenet apa saja yang telah ditemukan? Yuk kita simak sama-sama...
Baru-baru ini sebuah kelompok astronom internasional telah menemukan 10 planet baru yang pusat orbitnya bukan matahari. Tim itu menggunakan kamera robotik yang mendapatkan informasi cukup banyak tentang dunia lain tersebut, bahkan ada yang cukup eksotis. Sistem ini diharap akan merevolusi pandangan ilmu pengetahuan tentang pembentukan planet.
Dua diantara kelompok astronom itu berasal dari A.S, Rachel Street dan Tim Lister. Street adalah mahasiswa pasca-sarjana di University of California, Santa Barbara dan Las Cumbres Observatory Global Telescope Network (LCOGTN) di Santa Barbara. Lister adalah pimpinan proyek di LCOGTN.
Pemimpin tim, Don Pollaco dari Queen’s University, Belfast, Irlandia Utara, akan mengumumkan penemuannya pada pidato di pertemuan astronom nasional Royal Astronomical Society’s di Inggris pada hari rabu 2 April.
Kolaborasi internasional ini disebut “SuperWASP,” untuk Pencarian untuk Planet(Wide Area Search for Planets).
Teknik penemuan planet ini memberi informasi lebih tentang pembentukan dan evolusi planet daripada teknik gravitasi. Astronom mencari “transits,” momen dimana planet lewat didepan bintangnya, sama seperti gerhana di bumi.
Pada 6 bulan terakhir tim SuperWASP menggunakan 2 kamera di kepulauan Canary dan Afrika Selatan untuk menemukan 10 planet baru diluar tata surya.
Dengan teknik gravitasi, ilmuwan telah menemukan 270 planet diluar tata surya sejak awal 1990. Mereka mengukur gaya tarik gravitasi pada bintang yang berasal dari planet yang mengelilinginya. Ketika planet bergerak maka gaya tarik itu berubah. Tetapi hal ini baru dapat menemukan planet baru jika suatu bintang diamati dalam beberapa minggu atau bulan, sehingga kecepatan penemuannya lambat.
Teknik SuperWASP meliputi 2 set kamera yang mengamati kejadian transit dimana planet tepat berada didepan bintangnya sehingga memblok cahaya bintang yang mengakibatkan bintang tersebut terlihat dari bumi lebih pucat. Kamera SuperWASP bekerja sebagai robot, mengamati area luas dari langit pada sekali pandang. Setiap malam astronom menerima data tentang jutaan bintang. Mereka mencari data transit dan menemukan planet. Teknik transit juga memungkinkan ilmuwan untuk menyimpulkan ukuran dan massa planet.
Kolaborator dari seluruh dunia mengikuti setiap kemungkinan planet yang ditemukan SuperWASP dengan observasi lebih detil untuk mengkonfirmasi atau menolak penemuan tersebut.
Astronom yang bekerja di Las Cumbres Observatory Global Telescope Network (LCOGTN) bekerjasama dengan UC Santa Barbara memakai teleskop robotik di Arizona, Hawaii, dan Australia. Teleskop tersebut menyediakan data berkualitas tinggi untuk dipilih untuk observasi lebih lanjut. Data ini bersama data dari Nordic Optical Telescope di La Palma, Spanyol; the Swiss Euler Telescope di Cili; dan the Observatoire de Haute Provence di Perancis Selatan; memberi konfirmasi akhir adanya penemuan baru.
Total 46 planet telah ditemukan terhadap bintang transitnya. Sejak dioperasikan tahun 2004, kamera SuperWASP telah menemukan 15 bintang dan merupakan survey transit tersukses di dunia.
Planet yang ditemukan SuperWASP bermassa diantara separuh sampai delapan kali massa planet terbesar di tata surya yaitu Jupiter.
Angka dari dunia baru ini cukup menakjubkan. Sebagai contoh satu tahun versi WASP-12b, adalah setara dengan sehari lebih sedikit waktu bumi. Planet ini sangat dekat dengan bintangnya sehingga suhu siang harinya dapat mencapai 2300 derajat Celsius.
Lister dan Street dari LCOGTN/UCSB sangat gembira dengan hasil ini. Street menggambarkan penemuan ini sebagai langkah maju yang sangat besar bagi bidangnya.
Lister mengatakan, “Banyaknya penemuan baru dari SuperWASP akan merevolusi pengertian kita tentang pembentukan planet. Jaringan teleskop fleksibel global milik LCOGTN memainkan peranan terpenting dari usaha dunia untuk mempelajari planet baru.” (aw)
Tampilkan postingan dengan label edukasi. Tampilkan semua postingan
Tampilkan postingan dengan label edukasi. Tampilkan semua postingan
Selasa, 20 Januari 2009
'Bio Battery Gula' Menghasilkan Listrik
Baru-baru ini Sony mengumumkan pengembangan ‘bio battery’ yang menghasilkan listrik dari karbohidrat (gula) dengan menggunakan enzim sebagai katalis dengan memakai prinsip pembentukan energi pada makhluk hidup.
Sel uji dari ‘bio battery gula’ ini telah dapat mengeluarkan daya 50 mW, tingkat tertinggi yang dapat dicapai ‘bio battery’ pasif yang ada sampai sekarang. Output sel uji tersebut mampu menjalankan walkman untuk satu daftar lagu normal.
Untuk mewujudkan output daya tertinggi didunia, Sony mengembangkan sistem pemecahan gula untuk menghasilkan listrik yang melibatkan imobilisasi enzim secara efisien dan sebuah mediator ( bahan konduksi listrik) serta mempertahankan aktivitas enzim pada anoda. Sony juga mengembangkan struktur katoda baru yang menyuplai oksigen ke elektroda secara efisien dan memastikan jumlah air yang cukup tetap tersedia. Pengoptimalan elektrolit untuk dua teknologi ini memungkinkan tercapainya tingkat daya yang diinginkan.
Gula umumnya menjadi sumber energi tumbuhan yang dihasilkan melalui proses fotosintesis. Karena itu dapat diperbarui dan mudah ditemui di sebagian besar wilayah dunia, menunjukkan besarnya potensi ‘bio battery’ sebagai alat penghasil energi yang ramah lingkungan di masa depan. Dan penelitian ini telah disetujui sebagai paper akademis pada Pertemuan Nasional Masyarakat Kimia Amerika ke 234 di Boston.
Mekanisme ‘bio battery’
‘Bio battery’ gula ini memiliki anoda yang terdiri dari enzim pengolah gula dan mediator, dan katoda yang terdiri dari mediator dan enzim pengurang oksigen serta pemisah selofan di kedua sisi. Anode menghasilkan elektron dan hidrogen dari glukosa melalui proses berikut:
Image
Ion hidrogen dari proses ini akan bergerak ke katoda melalui separator. Kemudian ketika sampai di katoda, ion hidrogen dan elektron akan menyerap oksigen dari udara untuk menghasilkan air:
Image
Pencapaian penting penelitian dan pengembangan ‘bio battery’
Melalui reaksi elektrokimia ini elektron akan melewati sirkuit luar untuk menghasilkan listrik.
Untuk pengembangan ‘bio battery’ ini ada hal-hal penting yang harus diperhatikan, yaitu:
1.
Adanya teknologi untuk meningkatkan imobilisasi enzim dan mediator pada elektroda.
Agar penggunaan efektif glukosa terjadi, anoda harus memiliki mediator dan enzim konsentrasi tinggi dengan aktivitas yang tetap. Teknologi ini memakai dua polimer untuk merangkai komponen ke anoda. Tiap polimer bermuatan berlawanan sehingga interaksi elektrostatis antar dua polimer mengamankan enzim dan mediator. Kesetimbangan ionik dan dan imobilisasi telah dioptimalkan untuk pengekstrakan elektron dari glukosa secara efisien.
2.
Struktur katoda untuk penyerapan oksigen yang efisien.
Air dalam katoda penting untuk menjamin kondisi optimal untuk reduksi oksigen secara efisien. ‘Bio battery’ memakai elektroda karbon berporos yang memuat enzim terimobilisasi dan mediator yang dipartisi menggunakan pemisah selofan. Optimisasi struktur elektroda dan proses pemeliharaan tingkat air yang sesuai dapat meningkatkan reaktivitas katoda.
3.
Optimisasi elektrolit untuk memenuhi struktur sel ‘bio battery’
Penyangga fosfat 0.1 M biasanya dipakai pada penelitian enzim, tapi penyangga dengan konsentrasi tinggi 1.0 M digunakan pada ‘bio battery’. Ini berdasarkan penelitian bahwa tingkat konsentrasi tinggi sangat efektif untuk menjaga aktivitas enzim dalam elektroda.
4.
Sel uji dengan daya output tinggi dan ukuran yang diinginkan.
Sel uji dengan daya tinggi dan ukuran ‘bio baterry’ yang sesuai telah diproduksi dengan pemanfaatan teknologi ini. ‘Bio battery’ ini tidak memerlukan penyampuran, atau konveksi larutan glukosa atau udara; sebagai baterai pasif, cara kerjanya hanya menyuplai larutan gula ke unit baterai. Sel kubik menghasilkan 50 mW yang merupakan daya output terbesar diantara baterai tipe pasif dengan ukuran sekitar 39 mm setiap rusuknya. Dengan merangkai 4 sel kubik mampu untuk menyalakan walkman dan sepasang speaker. Tempat ‘bio battery’ gula ini terbuat dari plastik berbahan tumbuhan dan didesain dengan citra sel biologi.
Selain itu Sony juga akan terus mengembangkan sistem imobilisasi, komposisi elektroda dan teknologi lain untuk meningkatkan daya output dan ketahanannya, dengan tujuan aplikasi praktis ‘bio battery’ dimasa depan.
Sel uji dari ‘bio battery gula’ ini telah dapat mengeluarkan daya 50 mW, tingkat tertinggi yang dapat dicapai ‘bio battery’ pasif yang ada sampai sekarang. Output sel uji tersebut mampu menjalankan walkman untuk satu daftar lagu normal.
Untuk mewujudkan output daya tertinggi didunia, Sony mengembangkan sistem pemecahan gula untuk menghasilkan listrik yang melibatkan imobilisasi enzim secara efisien dan sebuah mediator ( bahan konduksi listrik) serta mempertahankan aktivitas enzim pada anoda. Sony juga mengembangkan struktur katoda baru yang menyuplai oksigen ke elektroda secara efisien dan memastikan jumlah air yang cukup tetap tersedia. Pengoptimalan elektrolit untuk dua teknologi ini memungkinkan tercapainya tingkat daya yang diinginkan.
Gula umumnya menjadi sumber energi tumbuhan yang dihasilkan melalui proses fotosintesis. Karena itu dapat diperbarui dan mudah ditemui di sebagian besar wilayah dunia, menunjukkan besarnya potensi ‘bio battery’ sebagai alat penghasil energi yang ramah lingkungan di masa depan. Dan penelitian ini telah disetujui sebagai paper akademis pada Pertemuan Nasional Masyarakat Kimia Amerika ke 234 di Boston.
Mekanisme ‘bio battery’
‘Bio battery’ gula ini memiliki anoda yang terdiri dari enzim pengolah gula dan mediator, dan katoda yang terdiri dari mediator dan enzim pengurang oksigen serta pemisah selofan di kedua sisi. Anode menghasilkan elektron dan hidrogen dari glukosa melalui proses berikut:
Image
Ion hidrogen dari proses ini akan bergerak ke katoda melalui separator. Kemudian ketika sampai di katoda, ion hidrogen dan elektron akan menyerap oksigen dari udara untuk menghasilkan air:
Image
Pencapaian penting penelitian dan pengembangan ‘bio battery’
Melalui reaksi elektrokimia ini elektron akan melewati sirkuit luar untuk menghasilkan listrik.
Untuk pengembangan ‘bio battery’ ini ada hal-hal penting yang harus diperhatikan, yaitu:
1.
Adanya teknologi untuk meningkatkan imobilisasi enzim dan mediator pada elektroda.
Agar penggunaan efektif glukosa terjadi, anoda harus memiliki mediator dan enzim konsentrasi tinggi dengan aktivitas yang tetap. Teknologi ini memakai dua polimer untuk merangkai komponen ke anoda. Tiap polimer bermuatan berlawanan sehingga interaksi elektrostatis antar dua polimer mengamankan enzim dan mediator. Kesetimbangan ionik dan dan imobilisasi telah dioptimalkan untuk pengekstrakan elektron dari glukosa secara efisien.
2.
Struktur katoda untuk penyerapan oksigen yang efisien.
Air dalam katoda penting untuk menjamin kondisi optimal untuk reduksi oksigen secara efisien. ‘Bio battery’ memakai elektroda karbon berporos yang memuat enzim terimobilisasi dan mediator yang dipartisi menggunakan pemisah selofan. Optimisasi struktur elektroda dan proses pemeliharaan tingkat air yang sesuai dapat meningkatkan reaktivitas katoda.
3.
Optimisasi elektrolit untuk memenuhi struktur sel ‘bio battery’
Penyangga fosfat 0.1 M biasanya dipakai pada penelitian enzim, tapi penyangga dengan konsentrasi tinggi 1.0 M digunakan pada ‘bio battery’. Ini berdasarkan penelitian bahwa tingkat konsentrasi tinggi sangat efektif untuk menjaga aktivitas enzim dalam elektroda.
4.
Sel uji dengan daya output tinggi dan ukuran yang diinginkan.
Sel uji dengan daya tinggi dan ukuran ‘bio baterry’ yang sesuai telah diproduksi dengan pemanfaatan teknologi ini. ‘Bio battery’ ini tidak memerlukan penyampuran, atau konveksi larutan glukosa atau udara; sebagai baterai pasif, cara kerjanya hanya menyuplai larutan gula ke unit baterai. Sel kubik menghasilkan 50 mW yang merupakan daya output terbesar diantara baterai tipe pasif dengan ukuran sekitar 39 mm setiap rusuknya. Dengan merangkai 4 sel kubik mampu untuk menyalakan walkman dan sepasang speaker. Tempat ‘bio battery’ gula ini terbuat dari plastik berbahan tumbuhan dan didesain dengan citra sel biologi.
Selain itu Sony juga akan terus mengembangkan sistem imobilisasi, komposisi elektroda dan teknologi lain untuk meningkatkan daya output dan ketahanannya, dengan tujuan aplikasi praktis ‘bio battery’ dimasa depan.
Langganan:
Postingan (Atom)